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The paper describes an investigation of the conditions of sxistence of the steady state

periodic snd rotational motions in a quasi-conservative system with one degree of ireedom
We formulate the sufficient conditions for the existence of a unique solution to a perturbed
equation similar to the parent equation. Such conditions were obtained earlier for less gen-

eral classes of equations.

1. Statement of the problem. We consider nonlinear systema described by eq-
uations of the type
4 Q (2)=eq(t, 2, 2, 21, v} 8) (ze= z(t — 1), | 0| <+ o0} (1.1)
where £ > 0 is a small parameter, ¢ & (— o0, ) is an independent real variable. snd Tis a
constant. We shall consider not only the hasic, or perturbed equation, but alsc a degenerate
form of {1.1), which is
zo + Q(z) =0 1.2)
and henceforth we shall assume that two-parameter families of solutions of (1.2) are given,
which are either periodic x4 = ¢ (i, @) or rotational

=% + 90, 0) 1.3)

and where ¢ is a periodic function of ¢ with the period Ty = 2n/w, Y=w(t ~ 15+ 0), G is
an arbitrary phase constant, @ = & {E) is the frequency of the unperturbed periodic or rota-

tional motion end E is the first integral of the unperturbed system [1 to 6].
It is well known, that the period of an unperturbed motion depends only on £ and in the

case of oscillations it is
@

T“E’”zi_fm%"ﬂ?ﬁ (T ={ewa)

where a,(E) and a4(E) are simple real roots of Eq.
E—~U(2)=0 (< a

We shall assume the simplest case [2.
For the rotation, the expression for the period is somewhat simpler
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an

"B1=) VIE- U

where 21 is the period of @ in x. It was proved in [5] that the solution of {1.2) will be ro-
tational and of the type (1.3), provided that the function Q is periodic in %, that its mean
value is zero and that £ > max U. When investigating the rotations in & perturbed system
we should assume, that the function g is also periodic in x and x,, with the periods equal
to 21 or 27/n where n is an integer, In the oacillatory case the above sssumptions need
not be made. In both cases we assume that ¢ is periodic with the period Il = const and, that
it is continuous in its argument ¢ appearing in it explicitly. Assumptions conceming the
smoothneas of Q and g with respect to the remaining arguments, will'be made later.

We shall also introduce the following assertion. The T-periodic solution of {1.1) will be
of the resonant type m/n if the following equalities hold: T = m[l = nT,. We should note
that the latter relation defines the constant £,

We shall consider the resonant, steady-state periodic or rotational solutions of (1.1) for
t € (— o, ) and below we investigate the conditions which are necessary for those mot«
ions to take place in the system. An analogous statement was employed by a large number
of authors {7 and 8] (also see the bibliography in [7]) studying periodic solutions of quasi~
linear systems with a deviating argument.

Nonlinear systems of she general type with time delay were studied in [91 for the parti-
cular case of an isolated generating periodic solution.

We should note that (1.1) can, be reduced by substitution to

dE } dt = ef (t, B, E, b, .3 &), dp/dt = (EyE) + eF (t, E, E., 9, $; ©)
in which f and F are 2m-periodic in the rotating phases ¢ and i/, and [l-periodic in ¢, Auto-

nomous system of the similar type with slowly varying parameters, was averaged in a simi-
lar context over the period of time ~ 1/¢ 101,

2. Construction of the perturbed solution. We shall use the method of
conaecutive approximations [2]. Assuming that Q has a second derivative in x and that ¢
has first partial derivatives in x, x°, x» X+ and & in some vicinity of x, and xq, x5, Xyqs
%4y and 0, respectively, which satisfy the Lipshits conditions and contain constants inde-
pendent of ¢, we make the substitution x = %, + 2y where y is an unknown periodic function
This yields the following quasi-linear equation fory

V't Q' (z) y = q(t Zo, Tos Ty 22030+ Y (& 4y ¥y Yo b5 8) (24)
in which

. . 1, 9 dgy\ .
Y99 Y ¥ 8)=— 5 Qo y"i‘(%‘)oy‘*'(%’)oy +

aq 3? . aq . . .
+(5), v+ (o ) o + (@), + ¥ v v v

snd Y*{t, v, ¥, yn ¥+ 0) = 0. We shall now construct a scheme of consecutive approxima=
tions in £ in order to obtain a periodic solution of (2.1). We shall obtain the zero approxi~
mation for y, assuming it to be a periodic solution of (2.1) at €= 0.

vo© Q' (z8) Vo = o (t oy Tos Tigr Top)

It is an ordinary linear inhomogeneouns equation whose coefficients and the right<hand
side are both periodic. Its integration presents no problems, since the basic method of sol-
ution of the corresponding homogeneous Eq.

(v —o aza (P, G)))

Yormu==2p, Yoa=ut-+v 3o

where 4 and v are periodic functions, is well known. Using the method of variation of the
constants of integration [2 and 3] we obtain
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t

1 t
yo==D [u§ (Sﬂ qou dls*”ﬂo—ﬂo) dty +v (§. qot diy — Bo)] + aou =
= L1, go] 4 %ot = yo* 4 o (D=1/4 (t)=1/(W¥ 4w’ —vu’))

where A (t) is a Wronskian which is constant by the Liouville’s theorem, a., and 8, are

constants of integration and L is an operator linear in g4.
It should be noted that the functiony, will be T-periodic at any gy, provided that the
real constant § satisfies Eq.

T
P®) =S qoudt =0 2.2
Q

and, that we put
Tt

Bo = -%—d (S qoudh-—vqg)dt
LIRS

Equation (2.2) defines the phase constant 0.
Next approximation for ¥ is given by
n+ Q=0+ Y (& Vo yp Ve Yegs O
which, similarly to the previous one, has a solution of the form
V1= y* + el [t, Y] +oqu

Condition of periodicity of ¥, at sny @, yields under some additional assumptions the
constant ., . Taking into account
T T

1 X .
- '2‘) Q" (%o) yo'u dt = 5 qoyo' dt
o b

we can show by direct integration, that the equation defining @ is linear in &, and has the

form

T
= {(38) o () (2 v+

o 8
(5% ) o + (),  w o}

which yields a, by elementary operations, provided of course that f* is & simple, real root

of (2.2).
To obtain further approximations for the periodic function y we shall use, in accordance

with our method, the following Egs. (where i 3 2)

¥ + Qoyi=qo+ &Y (t, ¥g_y, Yi g’ Yo, i-1r Yo, i00 &) (2.3)
whose solution is
vi=p* el [, Y 1+ o (2.4)
Condition of periodicity of y; yields, as before, the unknown constant G,y or in other
words, the (i — 1)<th approximation in & for all # & (~ e, 00) under a single condition that

these successive approximations converge uniformly and belong to the domain of definition
of the function ¥. We should note that the equations defining a, (k 3 1) will be nonlinear

and of the form
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T
oP aq\ . dq w . [ .9 .. (99 .
ak:aj.—.'+.) {[(g)oyk +(37)oyk +(—a:)oy,,k ""(az; )0y1,k +
0

+ (%37)0 + Yk'] U+ goyy”* e (v aw) Yk-l} dt=0 @9

Since (2.5) satisfies all the requirements of the theory of existence of the implicit funo-
tion a, (&), we may be justified in saying, that, for a sufficiently small | &| there exists
a unique solution a, = a, (&) of Eq. (2.5) and that a, (0) = a 4. This solution can be cons-
tructed using the method of successive approximations according to the scheme

a7
akm = (—g_é_"-) 1 § {[(%)oyk‘ + (%)0 ¥ "+ (aa—i')o!lr, Ny (';3%)0 Yo F

a . ye . " o
-+ (-52_)0 -+ Y}.(]_l) ] u +qoy . *le (yk + ak(J 1)y, )Yk—l} di

(=122, =a)

It therefore follows that the proposed scheme allows us to obtain, uniquely, any degree
of the formal approximation in & to the periodic solution of (2.1) for all ¢ € (- e, ee).
This can easily be proved using the method of induction. Next we shall prove the validity
of the scheme (2.3).

3. Proof of the validity of the scheme of successive approxima-
tions. We shall use the method developed in [2 and 11].
First we shall discuss the basic properties of the operator L. L is a linear operator
satisfying, by virtue of periodicity, the condition
max |E [t, F]| <A'B (B>0) 3.1)
where A = max|F|, while the constant B is bounded and does not depend on the choice of
F; moreover, the properties of smoothness of the function in terms of the arguments entering

F, are not affected.
We shall further introduce the notation

S, = S (¢, @, &) = yo* +eL[t, Yy ]+ au
T
Ry/= Ry (a, &) = SY (t Gpr Gy O o O, €) wdt
0
with the help of which we can write the equation defining a; as

R, [C e) =M 3.2)

We shall first show that when & is sufficiently small, then the functions yx, y &' yr,x
and 7‘r,k' belong, for all ¢ € (- o0, o), to some bounded region G, provided that a, is such
that vy, ¥¢ » ¥r o and yf'o' belong to the same region. To prove it we shell assume that it
is valid for all k up to (k - 1) inclusive, and then we shall show that when & is sufficient-
ly small and independent of k, then the boundedness property is also valid for k. From the
fundamental property (3.1) of the operator L we have, that |L (s, Yk-x” <A:B where A =
= max | Y| over the whole domain of definition of Y. Further

oR 3P
k
00 |em0, ma, | 00° +0
But then we can easily deduce from Expression
T
oR Y ) ¢ Y Y
k . .
'—a?.-_—.g (_3—6: u 3o, u 4 . u. 4+ %, x U, )udt

o
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that two positive numbers 4 and 7, independent of & exist, such that when

joo —ay | <p (3.3)
and & <7, then the inequality
|0Ry [ | > ¥ (3.4)

where y> 0 is independent of &, holds. We shall assume here that i1 and 77, are sc small,
that (Ox, 0x', 044 50 Orx) € G«

We shall now assume that when & <7,, then the roots a,(8) of (3.2} lie within the re-
gion (3.3), and we shall show that the magnitude 77, can indeed be chosen small enough to
ensure that

fop (8) —a | <p (3.5)
holds.

Let now C = max |3 R, /32|, assuming that C is independent of k over the whole domain
of existence of this derivative, and let us pat 7, <ypuC. Then the inequality (3.5) will cer~
tainly hold, Indeed, since a, (0) = a4, the inequality (3.5} by virtue of continuousldepen-
dence will hold at sufficiently small ®. Let us now assume the opposite, j.e. that at some
& = 8% (3.5) becomes an equality. We shall show that this is possible when '&*> 7, as-
suming initially the opposite, i.e. &*<7,. We can then write

ja,(e)—a, =lai(e‘)-—ak(0)§=

. da, () . |6ﬁ‘,‘ (ank )—1
=8 08 jemxe® & 19 \9a a=a;(kse*), e e

where %; is a proper positive fraction. Since o (%,8*) lies within the region (3.5), the
inequality (3.4) yields

lap (8%) —a| <e* C/y /Y <p
which contradicts the assumption that (3.5) became an equality., Thus we have shown that,
when the condition & <17, holds and 7, is chosen as required, all approximations belong
to G. Now we shall prove that the consecutive approximations (2.4) converge uniformly, Let
us introduce the following differences

l %y (8) — Ryt (8) ] < bk; [ Lg, Yk...ll — Lt Yk—1] l< %

r ['t: Y;.l_ Yg-g] ; < Vi ‘Lt [t Yk..) - Y};-a] !< n]:; LL*:. i, Y_k-lyk—a} l < v}:
where by, ag, %, a” and vy are some positive constants with upper bounds independent
of k. Let ¢, be the largest of a5, vy, 6,7 and v, 7. Since the function Y satisfies, in G, the
Lipshits conditions, we have

| Yy — Yy | <4Q (B2 P ecy)

where A denotes the maximum value of the following periodic functions |u], |u"}, |us], and
|u 4|, while Q is the Lipshits constant. Taking into account the above inequality we find

MLt Y=Yyl 1 <cpype LV =Y 1<y 1L [6 Y=Y 11 <oy

JL 8 Yy — Yl 1 < (Cp4y =4QB (M > 2cy))

Let us now obtain an estimate for the difference ay4, (8) — @, (&), We begin by consi-

dering the following auxilliary Eq.:
Oy Br. 8,8 =0 3.8
where T
O @B e 8 ={(t b & B B B ud

Q

;k == Ilo' + Bll “P‘ el [2: Yt.q] + SL {t' Yk - Yk..llt 8 (=] (Ov 8]



Steady-state periodic and muﬁo‘ml motions in nonlinear systems 118

We similarly define the functions £,', £, , and &z, Obviously, n,(& <7,) can be cho-
sen sufficiently small to ensure that (5, «f";', f,-,k, ?f.k') € 6, if

B—al Ly 6.7
where v is positive snd sufficiently small. We can then assume that the fanction @y is fully

defined. We shall now show that when 7, is sufficiently small, then the inequality |8, ~
— ag| <v where B, (&, 8) is a root of (3.6), holds for any k. Indeed we have

[Ba(e, 8) —ag] <p+Ba(e,8) —Bale 0
We can obtain 1 <v by choosing a sufficiently small 77;. We have then v — = A> 0. We
shall further show that | B, (8, 8) — B, (e, 0)| <A provided that 7, is sufficiently small.
Putting
oA/ M (M = max|3D,/88]; 0 <o < 3D,/ of)

where none of the magnitudes depend on k we obtain, in analogy to the previous case, the
required assertion. Now we can estimate the difference a, +,(8) — a,(#), noting that @4y
(8)= B, (8, &) and that a,(®) = 8, (&, 0). We obtain

3B, (e, 8) a0, (90, \-1
[ gy (B) —ap (&) | =By (e, 2) — By (e, 0} | =Gl T8 e "53"(—6?)

in which 8= Bl & %2 ), 5= %48 and 0 < %3 < 1. Let us now estimate 3®,/35. Differ-
entiating O, we find, ‘ﬂmt in the region (3.7) and when & <7,, we have

|00, /38| < 4TAH,,, =We,,,
where H is the largest of the upper bounds of 3Y/dy, 3Y/3y , dY/3y, and 3Y /0y, in their

domain of existence.
Collecting the estimates we now obtain

Py, (@) —ay (@) <byy (b =2We,,, /0)
from which it follows that the ratio by 41/Cx+; = &W/w and is independent of k. Conse-
quently we can infer that the ratio b, /¢, is also independent of k. But then the ratios
by4y /b and cp 4, /c, are also independent of &, since

b w ¢ w ¢ . b
k+1 k+1 X kel x|
"E‘-=e el —-48919'-0—;(&4— —5;3), —"""ck —4QB(K~"C" +e)

As b, /¢, is proportionsl to £, we find that when £ is sufficiently amall, the ratios
64y /¢ and by, /b will be less than unity, which proves that y,(t, £) converges abso-
lutely and uniformly.

Finally we shall show that the limit of this sequence is a solution of (2.1). Since L end
Y are smooth, we have

eL[t, Y]=elim L], Y, ,]=Ilimd(y, —a,u—yo*) =y (i &) —a () u—yo°
k-~s00 k—oo

Differentiating it we find, by the uniform convergence, thaty (¢, e) is a periodic solution
Of (201)-

Thus we have constructed a unique, resonant solution of (1.1) of the form m/n, with an
arbitrary constant deviation of its argument, for the rotational and osc:llatory cases, in the

form
z=z(t &) = (P, w) + ey (¢ € 3.8)

where y is a T-periodic fanction, and this proves the following theorem.

Theorem 3.]1. When the values of the parameter € are sufficiently small, then the
perturbed.Eq. (1.1) allows, in the region of definition and smoothness of the function Q, a
unique, m/n, resonant, oscillatory or rotational solution stationary for all ¢ | (- o9, o),
which becomes the generating solation x4t/ , @) when .2 =0 and which has the fomm (3.8)
provided that:

1) functions Q and ¢ satisfy the periodicity and smoothness conditions listed in Sections
1 and 2;
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2) equation (2.2) has & real root §* and

3) the relation @ 1E * )3 P /36" # 0 holds.

Note 3.1, The uniqueness of the solution is understood in the sense, that for each
real simple root #* corresponding to some fixed 7, m, n and &, there exists one solution
of the form {3.8), It is easily seen that a glven segment of leagth T, always contalas an
even number of such roots, i.e. 0, 2, 4,... .

Note 3.2. Let8* be an retuple {r <o) real root, i.e.

P &P i P
BT T i g7 T

{we naturally assume that Q and ¢ can be differentiated sufficient number of times), In this
case the solution may be no longer unique in the above sense and we then approximate the
exact solution, as a rule, in fractional powers of €. Obviously we can obtain the result
P /30* £ 0 by changing the constant Tand some other parameters, but this case was shown
in [2 and 3] to be critical and seldom met in practice. It should be noted that the critical
cases for sn analytic, autonomous, quasi~linear equation without a deviating argument were
investigated in [12.

Note 3.3. Another particular case which is more common occurs, when the equation
(2.2) is satisfied identically, i.e. independently of & for the given choice of 7 and m, n. In
this case we speak of the higher degree motions. Such oscillatory and rotational motions in
the systems described by ordinary equations of the type (1.1), were studied in [3 and 13].

Note 3.4, The case  “(E*) = 0 requires a separate investigation.

4. Example. To illustrate the method, we shall consider the following real system
described by a ‘pendulum’ equation
2" 4 atsin r=e[Nsinvt - bz’ (t — 1) — ffz" — o sgn 2’} (a3, N, b, B, = const > 0)
whose generating solution has, in the rotational case (if £ > 242) the form

it p
zo=2am [VE/2(t+9), a VI/E]=v+4 ELJTsinpw
ooy P AP

e —nkK’
(\P=m(E)(t+e). To(B)=2 VITEK (a VITE). q=exp ]’{')

Here am is an elliptic amplitude, K denotes a complex elliptic integral of the first kind
and K’ denotes its derivative [14]. We shall for simplicity limit ourselves to the principal
resonance ¢ (E) = v. After a cumbersome integration we obtain the following condition for
the phase equilibrium

o0
2
p(e)=_ﬂ_[~—- Ng ,sinve+16v 2 __g._x:z__(bcospw——ﬁ)—%-
vi 1+g g (1P
n

+2vp—B) —2a] =2 (— P ssinve 1) =0

which has simple real roots on the segment [0, 2rr/v): 6, = (1/) arc sin 8 and 6, = n/v —
—~0,(8=y/N) (g + 1/q)) provided that 8 < 1. When y = Ng/(1 + ¢), we easily find that
aP/ée‘ = 0, 1f on the other hand 8 < 1, then the basic resonant rotation cannot take place
near & =0, Thus, if y <Ng/(1 + ¢2), then by our theorem there exists a basic resonant
solution of the perturbed equation. Further deductions can be made without any fundamental
difficulties, using the formulas of Section 2.
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